
CodeWeb: Data Mining Library Reuse Patterns

Amir Michail
School of Computer Science and Engineering

University of New South Wales
amichail@cse.unsw.edu.au

1 Introduction

While popular commercial libraries, such as MFC, are
usually well-documented, open source or internally de-
veloped libraries are often not. In either case — and par-
ticularly in the latter — developers today learn to use a
software library not just from its documentation but also
from toy examples and existing real-life application code
(e.g., by using grep or looking at browse information).

The CodeWeb tool [6, 7, 8] takes this simple idea fur-
ther by a deeper analysis of a large collection of applica-
tions to see what characteristic usage of the library is like.
Specifically, the tool uses data mining techniques to dis-
cover so-called “reuse patterns”. Reuse patterns can be
used to guide and check library usage.

Our tool-based approach alleviates problems with
learning characteristic library usage in the following
ways: (1) by using many real-life applications instead of
a few toy programs, we can demonstrate reuse of many
library classes in more numerous and deeper ways; (2) by
using automated techniques, reuse patterns can always be
kept up to date with respect to the most recent version of
the library and applications; and (3) by leveraging existing
applications and using data mining technology, we com-
plement manually constructed tutorials and toy programs
if they are available and provide an alternative source of
information if they are not.

We demonstrate our approach by showing how the
KDE core libraries are used in real-life KDE applications.
Moreover, we look at a recently developed feature that
helps software developers port an application from an old
version of a library to a new one. Specifically, we consider
porting KDE applications from version 1 of the KDE core
libraries to version 2.

2 KDE

KDE is an open source project whose aim is to provide a
powerful graphical desktop environment for UNIX work-
stations that rivals Microsoft Windows [11]. In what fol-
lows, we shall show the results of (1) data mining usage
of the KDE 1 core libraries in 79 applications that come
with the KDE 1 distribution; (2) data mining usage of the
KDE 2 core libraries in 125 applications that come with
the KDE 2 distribution; and (3) data mining differences in
core library usage among KDE 1 and KDE 2 applications.

3 Reuse Table

A reuse table shows the percentage of existing applica-
tions that use various library classes. If a library class
has been used by many applications in the past, then it is
likely to be useful in future applications also — and so it
is certainly worth knowing about. For example, we see
from Figure 1, (a) that KApplication is used by 97.5%
of all KDE 1 applications and 76.8% of KDE 2 applica-
tions. Consequently, we should certainly consider using
this class in any new KDE application that we write.

The reuse table also shows two usage deltas for each li-
brary class. The first usage delta indicates the percentage
of KDE 2 applications that use a particular class minus
the percentage of KDE 1 applications that use that class.
If the usage delta is a large positive number, then this in-
dicates that there is a significant increase in the use of that
class in KDE 2, so one may consider using this class when
porting an application from KDE 1 to KDE 2. Similarly,
if the usage delta is a large negative number, then one may
consider not using the class any longer.

The second usage delta uses a different technique to
provide similar — but possibly more accurate — infor-
mation. (In future versions of the tool, both deltas may be

1



(a) (b)

(c) (d)

Figure 1: CodeWeb screenshots.

2



combined to produce one robust measure of change.) The
second usage delta is calculated by considering: (1) the
percentage of those applications present in both versions
that use the library class in v2 but not in v1; and (2) the
percentage of those applications present in both versions
that use the library class in v1 but not in v2. The second
percentage is shown in negated form (as it indicates that
the library class is no longer used in v2).

In practice, we show only one percentage which is the
larger of the absolute value of these two percentages. For
example, if this delta yields

�������
(to indicate adding a

library class) and �
���	�

(to indicate removing the class),
then we only show the larger number �

���	�
to indicate

that the library class is removed in 50% of the applications
ported from KDE 1 to KDE 2. Typically, one number is
much larger than the other in absolute value, so there is no
point in showing both.

From Figure 1, (a), we see that KCmdLineArgs has a
usage delta 1 of +88.8% and a usage delta 2 of +96.6%.
Indeed, this a new class introduced in KDE 2 to help
with processing command line arguments by automati-
cally taking into account KDE specific options. Many
applications now use it in KDE 2, so we should consider
using it in our applications also.

4 Reuse Patterns

Reuse patterns show characteristic ways in which library
classes have been used in existing applications. (See Fig-
ure 1, (b).) Typically, one would first browse the reuse ta-
ble to identify fundamental library classes of interest and
then browse their reuse patterns to see how such classes
are typically used in practice. By combining reuse pat-
terns with the library reference (which we assume exists
— at the very least as comments in the code), we start to
approach the knowledge offered by tutorials.

Clicking on the “Patterns” link to the right of KAp-
plication in Figure 1, (a) shows the reuse patterns in
Figure 1, (b). Reuse patterns are basically if/then rules
which indicate that application classes that contain the
antecedent tend to also contain the consequent. For ex-
ample, we see that application classes with KApplication
in the code tend to also contain exec() and KCmdLin-
eArgs. Rules of this form — which are known as associ-
ation rules — are of extensive interest in the data mining
community [1, 2, 3].

For each rule, four percentages are shown. The first
two, under V1 and V2 usage, indicate the “strength” of

the rule in KDE 1 and KDE 2. To be more precise, we
first need to define the notion of confidence [1, 2], which
is the percentage of application classes containing the an-
tecedent that also contain the consequent.

The first two percentages in Figure 1, (b) show the im-
provement, which is defined as the confidence of a rule
minus the percentage of application classes that contain
the consequent of that rule [3]. Improvement is a better in-
dicator of rule strength since confidence can be quite mis-
leading — particularly if the presence of the antecedent
actually decreases the likelihood of finding the conse-
quent (in which case, the improvement will be negative).

We also show two usage deltas for each reuse pattern
— analogous to the two in the reuse table. For exam-
ple, Figure 1, (b) clearly shows the usage of new KDE 2
classes such as KCmdLineArgs and KAboutData, when-
ever KApplication is used, as is indicated by the large
positive usage deltas.

The first usage delta is simply the improvement of the
rule in KDE 2 minus the improvement of the rule in
KDE 1. The second usage delta is calculated by con-
sidering: (1) the percentage of those application classes
present in both versions containing the antecedent in v1
in which the consequent is not present in v1 but is present
in v2; and (2) the percentage of those applications classes
present in both versions containing the antecedent in v1
in which the consequent is present in v1 but is not present
in v2. Again, we look at “improvement” by subtract-
ing away the percentage of application classes present in
both versions in which the corresponding consequent item
is added/deleted (regardless of whether the antecedent is
present in v1).

5 Application Source Code

The tool provides direct access to the application source
code for examples of library usage. For example, click-
ing on KCmdLineArgs in Figure 1, (b) yields a list of
application classes for the reuse pattern KApplication 

KCmdLineArgs in Figure 1, (c). More specifically, the
system shows a list of all application classes that contain
the antecedent (e.g., KApplication in this case). Along-
side each class, the tool indicates whether it supports the
pattern (that is, it contains both the antecedent and conse-
quent) or detracts from the pattern (that is, it contains the
antecedent but not the consequent). Additionally, the us-
age delta column indicates whether the consequent is: (1)
present in KDE 2 but not KDE 1 (that is, it was added); (2)

3



present in KDE 1 but not KDE 2 (that it, it was deleted);
(3) present in both; or (4) present in neither.

Clicking on an application class in Figure 1, (c) shows
the class source in KDE 1 and KDE 2 as demonstrated
in Figure 1, (d) for the application class kmoon’. This is
actually the “global” class for kmoon which contains all
global functions and variables in that application. Other
classes such as konqueror’clientApp denote a standard
class (e.g., clientApp) in a particular application (e.g.,
konqueror).

6 Related Work

Much of the research on tool support for software reuse
has focused on component retrieval systems whereby the
user submits information about the required component
— perhaps by specifying a few keywords — and the sys-
tem returns the closest matches it finds in the software
library [4, 9]. Yet, even if we ignore the technical chal-
lenges in such approaches (e.g., vocabulary mismatch),
observe that this query-based paradigm is limited in two
fundamental ways. First, the user may not be familiar
with the domain and may not know what kind of com-
ponents to look for in the library. This is particularly true
with object-oriented frameworks where the inheritance hi-
erarchy is deep and where lots of non-obvious choice is
present. Second, even if the user does find the components
of interest, they may not work together to accomplish the
desired task. Even if the components can be made to work
together to provide the desired functionality, the compo-
nent retrieval system certainly doesn’t tell the user how.

Other researchers have also observed the inadequacy
of the component retrieval approach to software reuse.
For example, there is other research that looks at typical
library usage such as that on exemplars [5] and reengi-
neering libraries [10]. While the first method addresses
the same problem we do, it requires sophisticated domain
analysis by an expert. The second method analyses li-
brary usage in existing applications in an automated man-
ner, but the method is designed to help developers reengi-
neer the inheritance hierarchy of a framework rather than
help users develop applications using a framework. More-
over, our method scales better than the lattice clustering
approach used in the second method and additionally sup-
ports porting applications from one version of the library
to another.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in large
databases. In Special Interest Group on Manage-
ment of Data, pages 207–216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In Proceedings of the 20th
Very Large Data Bases Conference, pages 487–499,
1994.

[3] R. J. Bayardo, R. Agrawal, and D. Gunopu-
los. Constraint-based rule mining in large, dense
databases. In Proceedings of the 15th International
Conference on Data Engineering, pages 188–197,
1999.

[4] W. B. Frakes and B. A. Nejmeh. Software reuse
through information retrieval. In 20th Hawaii In-
ternational Conference on System Sciences, pages
530–535. IEEE, 1987.

[5] D. Gangopadhyay and S. Mitra. Design by frame-
work completion. Automated Software Engineering,
3:219–237, 1996.

[6] A. Michail. Data mining library reuse patterns in
user-selected applications. In 14th IEEE Interna-
tional Conference on Automated Software Engineer-
ing, pages 24–33, 1999.

[7] A. Michail. Data mining library reuse patterns us-
ing generalized association rules. In Proceedings of
the 22nd International Conference on Software En-
gineering, 2000.

[8] A. Michail and D. Notkin. Illustrating object-
oriented library reuse by example: A tool-based ap-
proach. In 13th IEEE International Conference on
Automated Software Engineering, 1998.

[9] R. Prieto-Diaz and P. Freeman. Classifying software
for reusability. IEEE Software, 4(1):6–16, 1987.

[10] G. Snelting and F. Tip. Reengineering class hierar-
chies using concept analysis. In 6th ACM SIGSOFT
International Symposium on the Foundations of Soft-
ware Engineering, pages 99–110, 1998.

[11] KDE Team. What is KDE?
http://www.kde.org/whatiskde/index.html.

4


